DocumentCode :
1301736
Title :
QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems
Author :
Gu, Chenjie
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
Volume :
30
Issue :
9
fYear :
2011
Firstpage :
1307
Lastpage :
1320
Abstract :
We present a projection-based nonlinear model order reduction method, named model order reduction via quadratic-linear systems (QLMOR). QLMOR employs two novel ideas: 1) we show that nonlinear ordinary differential equations, and more generally differential-algebraic equations (DAEs) with many commonly encountered nonlinear kernels can be rewritten equivalently in a special representation, quadratic-linear differential algebraic equations (QLDAEs), and 2) we perform a Volterra analysis to derive the Volterra kernels, and we adapt the moment-matching reduction technique of nonlinear model order reduction method (NORM) [1] to reduce these QLDAEs into QLDAEs of much smaller size. Because of the generality of the QLDAE representation, QLMOR has significantly broader applicability than Taylor-expansion-based methods [1]-[3] since there is no approximation involved in the transformation from original DAEs to QLDAEs. Because the reduced model has only quadratic nonlinearities, its computational complexity is less than that of similar prior methods. In addition, QLMOR, unlike NORM, totally avoids explicit moment calculations, hence it has improved numerical stability properties as well. We compare QLMOR against prior methods [1]-[3] on a circuit and a biochemical reaction-like system, and demonstrate that QLMOR-reduced models retain accuracy over a significantly wider range of excitation than Taylor-expansion-based methods [1]-[3]. QLMOR, therefore, demonstrates that Volterra-kernel based nonlinear MOR techniques can in fact have far broader applicability than previously suspected, possibly being competitive with trajectory-based methods (e.g., trajectory piece-wise linear reduced order modeling [4]) and nonlinear-projection based methods (e.g., maniMOR [5]).
Keywords :
Volterra equations; computational complexity; differential algebraic equations; method of moments; nonlinear dynamical systems; reduced order systems; QLMOR; Taylor expansion based methods; Volterra kernels; biochemical reaction like system; computational complexity; moment matching reduction technique; nonlinear systems; numerical stability; projection based nonlinear model order reduction approach; quadratic linear differential algebraic equations; quadratic linear representation; Computational modeling; Differential equations; Integrated circuit modeling; Mathematical model; Nonlinear systems; Polynomials; Model order reduction; nonlinear; projection; quadratic-linear;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2011.2142184
Filename :
5991229
Link To Document :
بازگشت