• DocumentCode
    1302007
  • Title

    Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs

  • Author

    Bershad, N.J. ; Bouchired, S. ; Castanie, F.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA
  • Volume
    48
  • Issue
    2
  • fYear
    2000
  • fDate
    2/1/2000 12:00:00 AM
  • Firstpage
    557
  • Lastpage
    560
  • Abstract
    This correspondence investigates the statistical behavior of two adaptive gradient search algorithms for identifying an unknown Wiener-Hammerstein system (WHS) with Gaussian inputs. The first scheme attempts to identify the WHS with an LMS adaptive filter. The LMS algorithm identifies a scaled version of the convolution of the input and output linear filters of the WHS. The second scheme attempts to identify the unknown WHS with a gradient adaptive WHS when the shape of the nonlinearity is known a priori. The mean behavior of the gradient recursions are analyzed when the WHS nonlinearity is modeled by an error function. The mean recursions yield very good agreement with Monte Carlo simulations for slow learning
  • Keywords
    Gaussian processes; Monte Carlo methods; adaptive filters; gradient methods; identification; least mean squares methods; search problems; Gaussian inputs; LMS adaptive filter; Monte Carlo simulations; Wiener-Hammerstein systems; adaptive gradient identification; adaptive gradient search algorithms; convolution; error function; gradient recursions; input linear filters; nonlinearity; output linear filters; scaled version; statistical behavior; stochastic analysis; Adaptive filters; Convolution; Gaussian noise; Least squares approximation; Nonlinear filters; Nonlinear systems; Parameter estimation; Recursive estimation; Shape; Stochastic systems;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.823983
  • Filename
    823983