Title :
InAlGaAs/InAlAs MQWs on Si Substrate
Author :
Bei Shi ; Qiang Li ; Yating Wan ; Kar Wei Ng ; Xinbo Zou ; Chak Wah Tang ; Kei May Lau
Author_Institution :
Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
Abstract :
We report the growth and characterization of InAlGaAs/InAlAs multiquantum wells (MQWs) emitting at ~1310 -nm grown on silicon by organometallic vapor phase epitaxy. Compared with the same structure grown on a reference planar InP substrate, photoluminescence of the MQWs on Si shows both comparable line widths and internal quantum efficiencies at room temperature. A specially engineered InP buffer with interlayers on a nanopatterned silicon substrate was used. Cross-sectional transmission electron microscopy reveals effective dislocation filtering by the three strained InGaAs interlayers. The high-quality quantum-well structure grown on the InP-on-Si template suggests great potential of integrating III-V photonic devices on the Si platform.
Keywords :
III-V semiconductors; MOCVD; aluminium compounds; dislocations; gallium arsenide; indium compounds; photoluminescence; semiconductor epitaxial layers; semiconductor growth; semiconductor quantum wells; transmission electron microscopy; vapour phase epitaxial growth; III-V photonic devices; InAlGaAs-InAlAs; InP buffer; InP-Si; InP-on-Si template; cross-sectional transmission electron microscopy; dislocation filtering; high-quality quantum-well structure; internal quantum efficiency; multiquantum wells; nanopatterned silicon substrate; organometallic vapor phase epitaxy; photoluminescence; strained interlayers; temperature 293 K to 298 K; Epitaxial growth; Indium gallium arsenide; Indium phosphide; Quantum well devices; Silicon; Substrates; InAlGaAs/InAlAs multi-quantum wells; InP-on-Si; organometallic vapor phase epitaxy; photoluminescence;
Journal_Title :
Photonics Technology Letters, IEEE
DOI :
10.1109/LPT.2015.2391099