Title :
Adaptive call admission control under quality of service constraints: a reinforcement learning solution
Author :
Tong, Hui ; Brown, Timothy X.
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA
Abstract :
We solve the adaptive call admission control (CAC) problem in multimedia networks via reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously meeting quality of service (QoS) constraints that forbid entry into certain states and use of certain actions. We show that RL provides a solution to this constrained semi-Markov decision problem and is able to earn significantly higher revenues than alternative heuristics. Unlike other model-based algorithms, RL does not require the explicit state transition models to solve the decision problems. This feature is very important if one considers large integrated service networks supporting a number of different service types, where the number of states is so large that model-based optimization algorithms are infeasible. Both packet-level and call-level QoS constraints are addressed, and both conservative and aggressive approaches to the QoS constraints are considered. Results are demonstrated on a single link and extended to routing on a multilink network.
Keywords :
Markov processes; adaptive systems; asynchronous transfer mode; decision theory; learning (artificial intelligence); multimedia communication; optimal control; optimisation; packet switching; quality of service; telecommunication congestion control; telecommunication links; telecommunication network routing; telecommunication traffic; ATM networks; adaptive call admission control; aggressive approach; broadband networks; call-level QoS constraints; conservative approach; constrained semi-Markov decision problem; decision problems solution; large integrated service networks; model-based algorithms; model-based optimization algorithms; multilink network; multimedia networks; network revenue maximization; network routing; optimal control; packet-level QoS constraints; quality of service constraints; reinforcement learning solution; single link network; traffic model; Adaptive control; Admission control; Call admission control; Communication system control; Communication system traffic control; Intserv networks; Learning; Programmable control; Quality of service; Routing;
Journal_Title :
Selected Areas in Communications, IEEE Journal on