• DocumentCode
    130428
  • Title

    Security evaluation of bistable ring PUFs on FPGAs using differential and linear analysis

  • Author

    Yamamoto, Dai ; Takenaka, Mitsuru ; Sakiyama, Kazuo ; Torii, Naoya

  • Author_Institution
    Fujitsu Labs. Ltd., Kawasaki, Japan
  • fYear
    2014
  • fDate
    7-10 Sept. 2014
  • Firstpage
    911
  • Lastpage
    918
  • Abstract
    Physically Unclonable Function (PUF) is expected to be an innovation for anti-counterfeiting devices for secure ID generation, authentication, etc. In this paper, we propose novel methods of evaluating the difficulty of predicting PUF responses (i.e. PUF outputs), inspired by well-known differential and linear cryptanalysis. According to the proposed methods, we perform a first third-party evaluation for Bistable Ring PUF (BR-PUF), proposed in 2011. The BR-PUFs have been claimed that they have a resistance against the response predictions. Through our experiments using FPGAs, we demonstrate, however, that BR-PUFs have two types of correlations between challenges and responses, which may cause the easy prediction of PUF responses. First, the same responses are frequently generated for two challenges (i.e. PUF inputs) with small Hamming distance. A number of randomly-generated challenges and their variants with Hamming distance of one generate the same responses with the probability of 0.88, much larger than 0.5 in ideal PUFs. Second, particular bits of challenges in BR-PUFs have a great impact on the responses. The value of responses becomes `1´ with the high probability of 0.71 (> 0.5) when just particular 5 bits of 64-bit random challenges are forced to be zero or one. In conclusion, the proposed evaluation methods reveal that BR-PUFs on FPGAs have some correlations of challenge-response pairs, which helps an attacker to predict the responses.
  • Keywords
    cryptography; field programmable gate arrays; BR-PUF; FPGA; Hamming distance; bistable ring PUF security evaluation; challenge-response pairs; differential cryptanalysis; linear cryptanalysis; physically unclonable function; randomly-generated challenges; Cryptography; Education; Field programmable gate arrays; Ink; Logic gates; Wires;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on
  • Conference_Location
    Warsaw
  • Type

    conf

  • DOI
    10.15439/2014F122
  • Filename
    6933112