DocumentCode :
1307570
Title :
Barometric Pressure and Triaxial Accelerometry-Based Falls Event Detection
Author :
Bianchi, Federico ; Redmond, Stephen J. ; Narayanan, Michael R. ; Cerutti, Sergio ; Lovell, Nigel H.
Author_Institution :
Dept. of Biomed. Eng., Politec. di Milano, Milan, Italy
Volume :
18
Issue :
6
fYear :
2010
Firstpage :
619
Lastpage :
627
Abstract :
Falls and fall related injuries are a significant cause of morbidity, disability, and health care utilization, particularly among the age group of 65 years and over. The ability to detect falls events in an unsupervised manner would lead to improved prognoses for falls victims. Several wearable accelerometry and gyroscope-based falls detection devices have been described in the literature; however, they all suffer from unacceptable false positive rates. This paper investigates the augmentation of such systems with a barometric pressure sensor, as a surrogate measure of altitude, to assist in discriminating real fall events from normal activities of daily living. The acceleration and air pressure data are recorded using a wearable device attached to the subject´s waist and analyzed offline. The study incorporates several protocols including simulated falls onto a mattress and simulated activities of daily living, in a cohort of 20 young healthy volunteers (12 male and 8 female; age: 23.7 ±3.0 years). A heuristically trained decision tree classifier is used to label suspected falls. The proposed system demonstrated considerable improvements in comparison to an existing accelerometry-based technique; showing an accuracy, sensitivity and specificity of 96.9%, 97.5%, and 96.5%, respectively, in the indoor environment, with no false positives generated during extended testing during activities of daily living. This is compared to 85.3%, 75%, and 91.5% for the same measures, respectively, when using accelerometry alone. The increased specificity of this system may enhance the usage of falls detectors among the elderly population.
Keywords :
acceleration measurement; accelerometers; atmospheric pressure; biomedical measurement; decision trees; geriatrics; height measurement; medical diagnostic computing; pressure measurement; pressure sensors; age 23.7 yr; air pressure data; altitude measurement; barometric pressure sensor; disability; elderly population; fall event detection; gyroscope-based falls detection devices; health care utilization; heuristically trained decision tree classifier; indoor environment; injuries; morbidity; prognoses; triaxial accelerometry; wearable accelerometry; Acceleration; Accelerometers; Classification algorithms; Event detection; Geriatrics; Legged locomotion; Wearable sensors; Accelerometer; ambulatory monitoring; barometric pressure; fall; fall detection; Acceleration; Accidental Falls; Activities of Daily Living; Air Pressure; Algorithms; Analog-Digital Conversion; Automatic Data Processing; Decision Trees; Equipment Design; False Negative Reactions; False Positive Reactions; Female; Humans; Male; Monitoring, Ambulatory; Young Adult;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2010.2070807
Filename :
5559476
Link To Document :
بازگشت