Title :
A QFT-Based Decentralized Design Approach for Integrated Fault Detection and Control
Author :
Alavi, S. M Mahdi ; Saif, Mehrdad
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada
Abstract :
A novel practically implementable design approach is presented for integrated fault detection and control (IFDC) of uncertain systems. The desired constraints in relation to fault detection (FD) and control objectives are simultaneously considered throughout the design, and mapped to equivalent graphical bounds in Nichols chart. The resulting feedback law is obtained through an interactive loop-shaping technique such that the design bounds are satisfied. The proposed graphical design approach has a number of exclusive benefits from engineering perspective, in terms of simplicity and applicability to a large variety of fault types and models, that are discussed in this paper. The effectiveness of the proposed technique is experimentally assessed using the Three-Tank, Amira DTS200, benchmark system in the presence of multiplicative actuator and sensor faults.
Keywords :
decentralised control; fault diagnosis; feedback; uncertain systems; Amira DTS200; Nichols chart; QFT-based decentralized design approach; Three-Tank; integrated fault control; integrated fault detection; interactive loop-shaping technique; multiplicative actuator; qualitative feedback theory; sensor faults; uncertain systems; Additives; Fault detection; MIMO; Mathematical model; Robustness; Sensitivity; Uncertainty; Integrated fault detection and control (IFDC); loop-shaping technique; quantitative feedback theory; robust decentralized control; robust decentralized fault detection; simultaneous fault detection and control; uncertain systems;
Journal_Title :
Control Systems Technology, IEEE Transactions on
DOI :
10.1109/TCST.2011.2162646