DocumentCode :
1308134
Title :
Maximum a posteriori maximum entropy order determination
Author :
Knockaert, Luc
Author_Institution :
Dept. of Inf. Technol., INTEC, Ghent, Belgium
Volume :
45
Issue :
6
fYear :
1997
fDate :
6/1/1997 12:00:00 AM
Firstpage :
1553
Lastpage :
1559
Abstract :
An instance crucial to most problems in signal processing is the selection of the order of a presupposed model. Examples are the determination of the putative number of signals present in white Gaussian noise or the number of noise-contaminated sources impinging on a passive sensor array. It is shown that maximum a posteriori Bayesian arguments, coupled with maximum entropy considerations, offer an operational and consistent model order selection scheme, competitive with the minimum description length criterion
Keywords :
Bayes methods; Gaussian noise; array signal processing; direction-of-arrival estimation; maximum entropy methods; maximum likelihood estimation; signal processing; white noise; maximum a posteriori Bayesian arguments; maximum a posteriori maximum entropy order determination; minimum description length criterion; model order selection; noise contaminated sources; passive sensor array; signal processing; white Gaussian noise; Array signal processing; Bayesian methods; Entropy; Gaussian noise; Integrated circuit modeling; Integrated circuit noise; Lagrangian functions; Maximum likelihood estimation; Sensor arrays; Sequential analysis;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.599997
Filename :
599997
Link To Document :
بازگشت