DocumentCode :
1311714
Title :
Polynomial interpolation and prediction of continuous-time processes from random samples
Author :
Masry, Elias
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA
Volume :
43
Issue :
2
fYear :
1997
fDate :
3/1/1997 12:00:00 AM
Firstpage :
776
Lastpage :
783
Abstract :
We consider the interpolation and prediction of continuous-time second-order random processes from a finite number of randomly sampled observations using Lagrange polynomial estimators. The sampling process (t1) is a general stationary point process on the real line. We establish upper bounds on the mean-square interpolation and prediction errors and determine their dependence on the mean sampling rate β and on the number of samples used. Comparisons with the Wiener-Hopf estimator are given
Keywords :
continuous time systems; estimation theory; interpolation; polynomials; prediction theory; random processes; signal sampling; stochastic processes; Lagrange polynomial estimators; Wiener-Hopf estimator; continuous-time processes; mean sampling rate; mean-square interpolation; prediction errors; random samples; randomly sampled observations; sampling process; second-order random processes; stationary point process; upper bounds; Fault detection; Inspection; Interpolation; Lagrangian functions; Polynomials; Sampling methods; Sequential analysis; Signal sampling; Statistics; Testing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.556139
Filename :
556139
Link To Document :
بازگشت