• DocumentCode
    131228
  • Title

    Neural Adaptive controller for Magnetic levitation system

  • Author

    Hajimani, Masoud ; Dashti, Zohreh Alzahra Sanai ; Gholami, M. ; Jafari, Mohsen ; Shoorehdeli, Mahdi Aliyari

  • Author_Institution
    Dept. of Electr. Eng., Islamic Azad Univ., Qazvin, Iran
  • fYear
    2014
  • fDate
    4-6 Feb. 2014
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    In this study a Neural Adaptive method is used for position control and identification of a Magnetic levitation system. This controller consists of three parts: PID controller, radial basis function (RBF) network controller and radial basis function (RBF) network identifier. The combination of controllers produces a stable system which adapts to optimize performance. It is shown that this technique can be successfully used to stabilize any chosen operating point of the system. All derived results are validated by computer simulation of a nonlinear mathematical model of the system.
  • Keywords
    adaptive control; identification; magnetic levitation; neurocontrollers; position control; three-term control; PID controller; RBF network controller; RBF network identifier; computer simulation; magnetic levitation system; neural adaptive controller; nonlinear mathematical model; position control; radial basis function network controller; radial basis function network identifier; Adaptive control; Biological neural networks; Control systems; Magnetic levitation; Mathematical model; Intelligent Control; Magnetic levitation system; Neural Network; RBF;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Systems (ICIS), 2014 Iranian Conference on
  • Conference_Location
    Bam
  • Print_ISBN
    978-1-4799-3350-1
  • Type

    conf

  • DOI
    10.1109/IranianCIS.2014.6802530
  • Filename
    6802530