DocumentCode :
1313015
Title :
Toward a Science of Cyber–Physical System Integration
Author :
Sztipanovits, Janos ; Koutsoukos, Xenofon ; Karsai, Gabor ; Kottenstette, Nicholas ; Antsaklis, Panos ; Gupta, Vijay ; Goodwine, Bill ; Baras, John ; Wang, Shige
Author_Institution :
Inst. for Software Integrated Syst., Vanderbilt Univ., Nashville, TN, USA
Volume :
100
Issue :
1
fYear :
2012
Firstpage :
29
Lastpage :
44
Abstract :
System integration is the elephant in the china store of large-scale cyber-physical system (CPS) design. It would be hard to find any other technology that is more undervalued scientifically and at the same time has bigger impact on the presence and future of engineered systems. The unique challenges in CPS integration emerge from the heterogeneity of components and interactions. This heterogeneity drives the need for modeling and analyzing cross-domain interactions among physical and computational/networking domains and demands deep understanding of the effects of heterogeneous abstraction layers in the design flow. To address the challenges of CPS integration, significant progress needs to be made toward a new science and technology foundation that is model based, precise, and predictable. This paper presents a theory of composition for heterogeneous systems focusing on stability. Specifically, the paper presents a passivity-based design approach that decouples stability from timing uncertainties caused by networking and computation. In addition, the paper describes cross-domain abstractions that provide effective solution for model-based fully automated software synthesis and high-fidelity performance analysis. The design objectives demonstrated using the techniques presented in the paper are group coordination for networked unmanned air vehicles (UAVs) and high-confidence embedded control software design for a quadrotor UAV. Open problems in the area are also discussed, including the extension of the theory of compositional design to guarantee properties beyond stability, such as safety and performance.
Keywords :
autonomous aerial vehicles; control engineering computing; embedded systems; mobile robots; software engineering; stability; systems analysis; Cyber-physical system integration; control engineering computing; cross-domain interaction modeling; design flow; heterogeneous abstraction layers; heterogeneous systems; high-confidence embedded control software design; high-fidelity performance analysis; large-scale CPS design; large-scale Cyber-physical system design; model-based fully automated software synthesis; networked unmanned air vehicles; passivity-based design approach; quadrotor UAV; stability; timing uncertainties; Analytical models; Complexity theory; Computational modeling; Control systems; Cyberspace; Large-scale systems; Network topology; Stability analysis; System analysis and design; Control engineering computing; embedded software; system analysis and design;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/JPROC.2011.2161529
Filename :
6008519
Link To Document :
بازگشت