Title :
Anycast Routing for Survivable Optical Grids: Scalable Solution Methods and the Impact of Relocation
Author :
Shaikh, Ali ; Buysse, Jens ; Jaumard, Brigitte ; Develder, Chris
Author_Institution :
CSE Dept., Concordia Univ., Montreal, QC, Canada
fDate :
9/1/2011 12:00:00 AM
Abstract :
In this paper, we address the issue of resiliency against single link network failures in optical grids and show how the anycast routing principle, which is typical of grids, can be exploited in providing efficient shared path protection. We investigate two different integer linear program models for the full anycast routing problem, deciding on the primary and backup server locations as well as on the lightpaths toward them. The first model is a classical integer linear programming (ILP) model, which lacks scalability. The second model is a large-scale optimization model which can be efficiently solved using column generation techniques. We also design two new heuristics: the first one is an improvement of a previously proposed one which, although providing near optimal solutions, lacks scalability, while the second one is highly scalable, at the expense of reduced accuracy. Numerical results are presented for three mesh networks with varying node degrees. They allow an illustration of the scalability of the newly proposed approaches. Apart from highlighting the difference in performance (i.e., scalability and optimality) among the algorithms, our case studies demonstrate the bandwidth savings that can be achieved by exploiting relocation rather than using a backup path to the original (failure-free) destination site. Numerical results for varying network topologies, as well as different numbers of server sites show that relocation allows bandwidth savings in the range of 7-21%.
Keywords :
integer programming; linear programming; telecommunication network reliability; telecommunication network routing; anycast routing; column generation techniques; failure-free destination; integer linear programming model; mesh networks; scalable solution methods; single link network failures; survivable optical grids; Bandwidth; Optical fiber networks; Optimized production technology; Pricing; Routing; Scalability; Servers; Anycast routing; Column generation model; Network dimensioning; Network provisioning; Optical grids; Protection; Server location;
Journal_Title :
Optical Communications and Networking, IEEE/OSA Journal of
DOI :
10.1364/JOCN.3.000767