DocumentCode :
1316497
Title :
Minimal and canonical rational generator matrices for convolutional codes
Author :
Forney, G. David, Jr. ; Johannesson, Rolf ; Wan, Zhe-Xian
Author_Institution :
Motorola Inc., Mansfield, MA, USA
Volume :
42
Issue :
6
fYear :
1996
fDate :
11/1/1996 12:00:00 AM
Firstpage :
1865
Lastpage :
1880
Abstract :
A full-rank K×n matrix G(D) over the rational functions F(D) generates a rate R=k/n convolutional code C. G(D) is minimal if it can be realized with as few memory elements as any encoder for C, and G(D) is canonical if it has a minimal realization in controller canonical form. We show that G(D) is minimal if and only if for all rational input sequences u(D), the span of u(D)G(D) covers the span of u(D). Alternatively, G(D) is minimal if and only if G(D) is globally zero-free, or globally invertible. We show that G(D) is canonical if and only if G(D) is minimal and also globally orthogonal, in the valuation-theoretic sense of Monna (1970)
Keywords :
convolutional codes; matrix algebra; canonical rational generator matrices; convolutional codes; encoder; full-rank matrix; globally invertible matrix; globally orthogonal matrix; globally zero-free matrix; memory elements; minimal generator matrices; rational functions; rational input sequences; span; valuation theory; Convolutional codes; Cost accounting; Helium; Information theory; Iterative decoding; Modems; Polynomials; Sections; Terminology; Testing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.556681
Filename :
556681
Link To Document :
بازگشت