DocumentCode :
1316921
Title :
Multi-state dependent parameter model identification and estimation for nonlinear dynamic systems
Author :
Sadeghi, Javad ; Tych, W. ; Chotai, A. ; Young, P.C.
Volume :
46
Issue :
18
fYear :
2010
fDate :
9/1/2010 12:00:00 AM
Firstpage :
1265
Lastpage :
1266
Abstract :
An important generalisation of the state dependent parameter approach to the modelling of nonlinear dynamic systems to include multi-state dependent parameter (MSDP) nonlinearities is described. The recursive estimation of the MSDP model parameters in a multivariable state space occurs along a multipath trajectory, employing the Kalman filter and fixed interval smoothing algorithms. The novelty of the method lies in redefining the concepts of sequence (predecessor, successor), allowing for its use in a multi-state dependent context, so producing efficient parameterisation for a fairly wide class of nonlinear, stochastic dynamic systems. The format of the estimated model allows its direct use in control system design.
Keywords :
Kalman filters; nonlinear dynamical systems; recursive estimation; state-space methods; Kalman filter; fixed interval smoothing; multipath trajectory; multistate dependent parameter estimation nonlinear dynamic systems; multistate dependent parameter model identification; multistate dependent parameter nonlinearities; multivariable state space; recursive estimation;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2010.1180
Filename :
5567049
Link To Document :
بازگشت