DocumentCode :
1317213
Title :
Training binary node feedforward neural networks by back propagation of error
Author :
Toms, D.J.
Author_Institution :
Tacan Corp., Carlsbad, CA, USA
Volume :
26
Issue :
21
fYear :
1990
Firstpage :
1745
Lastpage :
1746
Abstract :
Despite the absence of derivatives, binary node neural networks having a hidden layer and multiple outputs can be trained using an algorithm which closely resembles conventional back propagation. The algorithm is based on the use of hidden unit activation functions which transform in the course of the training from analogue (sigmoid) to binary (step).
Keywords :
adaptive systems; neural nets; algorithm; analogue; binary node neural networks; conventional back propagation; error back propagation; hidden unit activation functions; multiple outputs;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19901121
Filename :
83088
Link To Document :
بازگشت