DocumentCode :
1318000
Title :
Velocity field computation using neural networks
Author :
HANBING, J.
Author_Institution :
Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., China
Volume :
26
Issue :
21
fYear :
1990
Firstpage :
1787
Lastpage :
1790
Abstract :
A new approach for optical flow (image velocity) fields computation is presented using computational neural networks. The computational procedure consists of three stages: estimation of the parameters of the neural network model, dynamic measurement of the perpendicular velocity components of the contours or region boundaries and computation of the image velocity fields. The parameters are estimated by comparing the energy function of the neural network with a constrained error function. The nonlinear velocity fields computation method is then carried out iteratively by using a dynamic algorithm to minimise the energy function simultaneously with the dynamic measurement of the perpendicular velocity components by a dynamic procedure. Experiments generate velocity fields that are meaningful and consistent with visual perception.
Keywords :
iterative methods; neural nets; picture processing; constrained error function; dynamic algorithm; dynamic measurement; energy function; image processing; image velocity; iterative method; neural network model; nonlinear velocity fields computation method; optical flow field computation; parameters estimation; perpendicular velocity components; visual perception;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19901146
Filename :
83113
Link To Document :
بازگشت