DocumentCode :
1318209
Title :
Match-length functions for data compression
Author :
Gavish, Amnon ; Lempel, Abraham
Author_Institution :
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
Volume :
42
Issue :
5
fYear :
1996
fDate :
9/1/1996 12:00:00 AM
Firstpage :
1375
Lastpage :
1380
Abstract :
We investigate uniquely decodable match-length functions (MLFs) in conjunction with Lempel-Ziv (1977) type data compression. An MLF of a data string is a function that associates a nonnegative integer with each position of the string. The MLF is used to parse the input string into phrases. The codeword for each phrase consists of a pointer to the beginning of a maximal match consistent with the MLF value at that point. We propose several sliding-window variants of LZ compression employing different MLF strategies. We show that the proposed methods are asymptotically optimal for stationary ergodic sources and that their convergence compares favorably with the LZ1 variant of Wyner and Ziv (see Proc. IEEE, vol.82, no.6, p.872, 1994)
Keywords :
convergence of numerical methods; data compression; decoding; functions; source coding; Lempel-Ziv type data compression; asymptotically optimal methods; codeword; convergence; data string; decodable match-length functions; input string; maximal match; nonnegative integer; phrases; sliding window; source coding; stationary ergodic sources; Computer science; Convergence; Data compression; Databases; Decoding; Dictionaries; History; Impedance matching; Information theory; Interpolation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.532879
Filename :
532879
Link To Document :
بازگشت