DocumentCode :
1318563
Title :
The optimal error exponent for Markov order estimation
Author :
Finesso, Lorenzo ; Liu, Chuang-Chun ; Narayan, Prakash
Author_Institution :
LADSEB, CNR, Padova, Italy
Volume :
42
Issue :
5
fYear :
1996
fDate :
9/1/1996 12:00:00 AM
Firstpage :
1488
Lastpage :
1497
Abstract :
We consider the problem of estimating the order of a stationary ergodic Markov chain. Our focus is on estimators which satisfy a generalized Neyman-Pearson criterion of optimality. Specifically, the optimal estimator minimizes the probability of underestimation among all estimators with probability of overestimation not exceeding a given value. Our main result identifies the best exponent of asymptotically exponential decay of the probability of underestimation. We further construct a consistent estimator, based on Kullback-Leibler divergences, which achieves the best exponent. We also present a consistent estimator involving a recursively computable statistic based on appropriate mixture distributions; this estimator also achieves the best exponent for underestimation probability
Keywords :
Markov processes; estimation theory; information theory; optimisation; probability; Kullback-Leibler divergences; Markov order estimation; asymptotically exponential decay; generalized Neyman-Pearson criterion; mixture distributions; optimal error exponent; overestimation; probability; recursively computable statistic; stationary ergodic Markov chain; underestimation; Distributed computing; Entropy; Hidden Markov models; Probability; Recursive estimation; Redundancy; Senior members; State estimation; Statistical distributions; System testing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.532889
Filename :
532889
Link To Document :
بازگشت