DocumentCode :
1320483
Title :
Hierarchical modeling of EEG signals
Author :
Sanderson, A.C. ; Segen, J. ; Richey, E.
Author_Institution :
Dept. of Electrical Engng., Carnegie-Mellon Univ., Pittsburgh, PA, USA
Issue :
5
fYear :
1980
Firstpage :
405
Lastpage :
415
Abstract :
Describes a technique for quantitative analysis of EEG signals which is based on a hierarchy of models. These models include 1) recursively estimated autoregressive model, 2) piecewise stationary autoregressive model, 3) composite source model, and 4) character string and syntactic models. This hierarchical modeling approach introduces criteria for segmentation, clustering, and identification of character substrings which reduce the need for ad hoc parameters or subjective decisions. The hierarchical representation is therefore highly operator independent, provides significant data compression of complex signals, and is compatible with a generalized classification procedure. Examples of the application of this modeling approach to clinical patient EEG data illustrate the system capabilities.
Keywords :
data compression; electroencephalography; pattern recognition; EEG signals; character string; clustering; complex signals; composite source model; data compression; hierarchical modelling; identification; piecewise stationary autoregressive model; recursively estimated autoregressive model; segmentation; syntactic models; Autoregressive processes; Brain models; Computational modeling; Data models; Electroencephalography; Switches; Biomedical pattern recognition; clustering; composite source model; computer analysis of EEG; data compression; hierarchical classification; minimal representation criterion; nonstationary time-series modeling;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1980.6592361
Filename :
6592361
Link To Document :
بازگشت