Title :
Compression of 3D Integral Images Using 3D Wavelet Transform
Author_Institution :
Eng. & Design, Brunel Univ., Uxbridge, UK
Abstract :
Integral imaging is a technique capable of displaying 3D images with continuous parallax in full natural color. It has been reported by many research groups and is becoming a viable alternative for 3D television. With the development of 3D integral imaging, image compression becomes mandatory for the storage and transmission of 3D integral images. In this paper, the use of the lifting scheme in the application of a 3D Wavelet Transform for the compression of 3D Integral Images is proposed. The method requires the extraction of different viewpoint images from an integral image. The 3D wavelet decomposition is computed by applying three separate 1D transforms along the coordinate axes of the given sequence of Viewpoint Images. The spatial wavelet decompositions on a single viewpoint and on the inter-viewpoint images are performed using the biorthogonal Cohen-Debauchies-Feauveau 9/7 and 5/3 filter banks, respectively. All the resulting wavelet coefficients from application of the 3D wavelet decomposition are arithmetic encoded. Simulations are performed on a set of different grey level 3D Integral Images using a uniform scalar quantizer with deadzone. The results for the average of the four intensity distributions are presented and compared with previous use of 2D DWT and 3D-DCT based schemes. It was found that the algorithm achieves better rate-distortion performance and reconstructs the images with much better image quality at very low bit rates.
Keywords :
channel bank filters; data compression; discrete wavelet transforms; image colour analysis; 1D transforms; 2D DWT; 3D integral image compression; 3D integral image transmission; 3D television; 3D wavelet transform; 3D-DCT based schemes; biorthogonal Cohen-Debauchies-Feauveau filter banks; grey level 3D integral images; interviewpoint images; rate-distortion performance; spatial wavelet decompositions; uniform scalar deadzone; uniform scalar quantizer; Discrete wavelet transforms; Image coding; Lenses; Microoptics; Three dimensional displays; 3D TV; 3D imaging; Image compression; wavelet transform;
Journal_Title :
Display Technology, Journal of
DOI :
10.1109/JDT.2011.2159359