Title :
The Theoretical Study of Semiconductor-Bridge Dynamic Resistance
Author :
Liu, Mingfang ; Zhang, Xiaobing
Author_Institution :
Nanjing Univ. of Sci. & Technol., Nanjing, China
Abstract :
The semiconductor bridge (SCB) is a heavily n-doped semiconductor. The SCB device has advantages for reducing voltage and energy requirements compared with a conventional device. It also has very excellent safety. When driven with a short low-energy pulse, the SCB creates hot plasma to ignite energetic materials. The hot plasma permeates the energetic materials and deposits its latent heat of fusion to the grains, thereby heating the granular surfaces to energy states required for self-sustained reaction. The behavior of the SCB can be facilitated through the simulation of the electrical components. The resistance of the SCB is a key parameter during the process of producing the plasma. The dynamic resistance of a heavily doped semiconductor resistor was evaluated by observing the electrical mobility and conductivity of the resistor as a function of temperature covering the range from room temperature to the plasma temperature. In an effort to elucidate the dynamic resistance of the SCB, current was forced to flow through the bridge with an initial resistance of 1 Ω. The energy stored in a 25-μF capacitor was used to activate the plasma. Two peaks in the voltage-time curve were typically observed. Time histories of the resistance and voltage show the special features of the resistor. It appears that the resistance increases initially before the intrinsic temperature and then decreases due to negative resistance behavior, and then, the resistor is melted and vaporized to generate plasma.
Keywords :
carrier mobility; electric resistance; electrical conductivity; energy states; heat of fusion; ignition; plasma production; plasma temperature; resistors; semiconductor devices; dynamic resistance; electrical conductivity; electrical mobility; energy states; granular surfaces; heavily doped semiconductor resistor; hot plasma; latent heat of fusion; plasma temperature; room temperature; self-sustained reaction; semiconductor bridge; voltage-time curve; Conductivity; Mathematical model; Plasma temperature; Resistance; Silicon; Temperature distribution; Dynamic resistance; electrical conductivity; igniter; semiconductor bridge (SCB);
Journal_Title :
Plasma Science, IEEE Transactions on
DOI :
10.1109/TPS.2010.2062541