DocumentCode :
1325500
Title :
Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation
Author :
Caillol, Hélèn ; Pieczynski, Wojciech ; Hillion, Alain
Author_Institution :
Dept. Signal et Image, Inst. Nat. des Telecommun., Evry, France
Volume :
6
Issue :
3
fYear :
1997
fDate :
3/1/1997 12:00:00 AM
Firstpage :
425
Lastpage :
440
Abstract :
This paper addresses the estimation of fuzzy Gaussian distribution mixture with applications to unsupervised statistical fuzzy image segmentation. In a general way, the fuzzy approach enriches the current statistical models by adding a fuzzy class, which has several interpretations in signal processing. One such interpretation in image segmentation is the simultaneous appearance of several thematic classes on the same site. We introduce a new procedure for estimating of fuzzy mixtures, which is an adaptation of the iterative conditional estimation (ICE) algorithm to the fuzzy framework, We first describe the blind estimation, i.e., without taking into account any spatial information, valid in any context of independent noisy observations. Then we introduce, in a manner analogous to classical hard segmentation, the spatial information by two different approaches: contextual segmentation and adaptive blind segmentation. In the first case, the spatial information is taken into account at the segmentation step level, and in the second case it is taken into account at the parameter estimation step level. The results obtained with the iterative conditional estimation algorithm are compared to those obtained with expectation-maximization (EM) and the stochastic EM algorithms, on both parameter estimation and unsupervised segmentation levels, via simulations. The methods proposed appear as complementary to the fuzzy C-means algorithms
Keywords :
Gaussian distribution; adaptive estimation; fuzzy systems; image segmentation; iterative methods; parameter estimation; statistical analysis; adaptive blind segmentation; blind estimation; contextual segmentation; fuzzy C-means algorithms; fuzzy Gaussian distribution mixture; fuzzy class; independent noisy observations; iterative conditional estimation algorithm; parameter estimation step level; segmentation step level; spatial information; thematic classes; unsupervised statistical image segmentation; Associate members; Gaussian distribution; Ice; Image segmentation; Iterative algorithms; Parameter estimation; Random variables; Satellites; Signal processing algorithms; Stochastic processes;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.557353
Filename :
557353
Link To Document :
بازگشت