• DocumentCode
    1325906
  • Title

    Two-dimensional recursive parameter identification for adaptive Kalman filtering

  • Author

    Azimi-Sadjadi, Mahmood R. ; Bannour, Sami

  • Author_Institution
    Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA
  • Volume
    38
  • Issue
    9
  • fYear
    1991
  • fDate
    9/1/1991 12:00:00 AM
  • Firstpage
    1077
  • Lastpage
    1081
  • Abstract
    The authors study the development of a two-dimensional (2-D) adaptive Kalman filtering by recursive adjustment of the parameters of an autoregressive (AR) image model with a nonsymmetric half-plane (NSHP) region of support. The image and degradation models are formulated in a 2-D state-space model, for which the relevant 2-D Kalman filtering equations are given. The recursive parameter identification is achieved using the extension of the stochastic Newton approach to the 2-D case. This process can be implemented online to estimate the image model parameters based upon the local statistics in every processing window. Simulation results for removing an additive noise from a degraded image are presented
  • Keywords
    Kalman filters; adaptive filters; filtering and prediction theory; parameter estimation; picture processing; state-space methods; two-dimensional digital filters; 2D filtering; AR image model; adaptive Kalman filtering; additive noise removal; autoregressive model; degradation models; image model parameters; local statistics; nonsymmetric half-plane; recursive parameter identification; state-space model; stochastic Newton approach; Adaptive filters; Additive noise; Degradation; Equations; Filtering; Kalman filters; Parameter estimation; Statistics; Stochastic resonance; Two dimensional displays;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0098-4094
  • Type

    jour

  • DOI
    10.1109/31.83878
  • Filename
    83878