DocumentCode :
1326009
Title :
Robust blind beamforming using neural network
Author :
He, Z. ; Chen, Y.
Author_Institution :
Dept. of Radio Eng., Southeast Univ., Nanjing, China
Volume :
147
Issue :
1
fYear :
2000
fDate :
2/1/2000 12:00:00 AM
Firstpage :
41
Lastpage :
46
Abstract :
Many blind beamforming algorithms, such as constrained cyclic adaptive beamforming (C-CAB), use cyclostationarity to estimate the steering vector and adaptively obtain the linearly constrained minimum variance (LCMV) optimum solution. However, LCMV methods are sensitive to the mismatch caused by the uncalibration array or estimate error. After discussion of this mismatch, a robust blind beamforming algorithm is presented. Implemented as a neural network, this algorithm reduces the computational complexity for real-time use. Computer simulations verify the analysis
Keywords :
Hopfield neural nets; adaptive estimation; array signal processing; computational complexity; covariance analysis; C-CAB; LCMV optimum solution; blind beamforming algorithms; computational complexity reduction; computer simulations; cyclostationarity; estimate error; improved Hopfield network; linearly constrained minimum variance; neural network; robust blind beamforming; steering vector estimation;
fLanguage :
English
Journal_Title :
Radar, Sonar and Navigation, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2395
Type :
jour
DOI :
10.1049/ip-rsn:20000251
Filename :
838815
Link To Document :
بازگشت