Title :
Fault Diagnosis Based on Causal Computations
Author :
Rosich, Albert ; Frisk, Erik ; Åslund, Jan ; Sarrate, Ramon ; Nejjari, Fatiha
Author_Institution :
Inst. de Robot. i Inf. Ind., Univ. Politec. de Catalunya, Barcelona, Spain
fDate :
3/1/2012 12:00:00 AM
Abstract :
This paper focuses on residual generation for model-based fault diagnosis. Specifically, a methodology to derive residual generators when nonlinear equations are present in the model is developed. A main result is the characterization of computation sequences that are particularly easy to implement as residual generators and that take causal information into account. An efficient algorithm, based on the model structure only, which finds all such computation sequences, is derived. Furthermore, fault detectability and isolability performances depend on the sensor configuration. Therefore, another contribution is an algorithm, also based on the model structure, that places sensors with respect to the class of residual generators that take causal information into account. The algorithms are evaluated on a complex highly nonlinear model of a fuel cell stack system. A number of residual generators that are, by construction, easy to implement are computed and provide full diagnosability performance predicted by the model.
Keywords :
fault diagnosis; nonlinear equations; nonlinear systems; causal computations; complex highly nonlinear model; fault detectability; fuel cell stack system; isolability performances; model-based fault diagnosis; nonlinear equations; residual generators; sensor configuration; Computational modeling; Equations; Fault diagnosis; Generators; Mathematical model; Redundancy; Sensors; Causal computations; fault diagnosis; fuel cell stack (FCS) system; sensor placement;
Journal_Title :
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on
DOI :
10.1109/TSMCA.2011.2164063