Title :
A Coding-Cost Framework for Super-Resolution Motion Layer Decomposition
Author :
Schoenemann, Thomas ; Cremers, Daniel
Author_Institution :
Centre for Math. Sci., Lund Univ., Lund, Sweden
fDate :
3/1/2012 12:00:00 AM
Abstract :
We consider the problem of decomposing a video sequence into a superposition of (a given number of) moving layers. For this problem, we propose an energy minimization approach based on the coding cost. Our contributions affect both the model (what is minimized) and the algorithmic side (how it is minimized). The novelty of the coding-cost model is the inclusion of a refined model of the image formation process, known as super resolution. This accounts for camera blur and area averaging arising in a physically plausible image formation process. It allows us to extract sharp high-resolution layers from the video sequence. The algorithmic framework is based on an alternating minimization scheme and includes the following innovations. (1) A video labeling, we optimize the layer domains. This allows to regularize the shapes of the layers and a very elegant handling of occlusions. (2) We present an efficient parallel algorithm for extracting super-resolved layers based on TV filtering.
Keywords :
feature extraction; image motion analysis; image restoration; image sequences; optimisation; parallel algorithms; video cameras; video coding; TV filtering; camera blur; coding cost model; energy minimization approach; feature extraction; image coding; image decomposition; image formation process; image motion analysis; occlusions; parallel algorithm; superposition moving layer; video labeling; video sequence; Cameras; Computer vision; Encoding; Energy resolution; Image resolution; Motion segmentation; Shape; Image decomposition; image motion analysis; optimization; video signal processing;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2011.2169271