DocumentCode :
1328281
Title :
The discrete fractional Fourier transform
Author :
Candan, Çagatay ; Kutay, M. Alper ; Ozaktas, Haldun M.
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
48
Issue :
5
fYear :
2000
fDate :
5/1/2000 12:00:00 AM
Firstpage :
1329
Lastpage :
1337
Abstract :
We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions. The definition is exactly unitary, index additive, and reduces to the DFT for unit order. The fact that this definition satisfies all the desirable properties expected of the discrete fractional Fourier transform supports our confidence that it will be accepted as the definitive definition of this transform
Keywords :
discrete Fourier transforms; eigenvalues and eigenfunctions; matrix algebra; DFT; DFT matrix; discrete Fourier transform; discrete fractional Fourier transform; eigenvectors; index additive definition; unitary definition; Additives; Discrete Fourier transforms; Discrete transforms; Fourier transforms; Information filtering; Information filters; Nonlinear filters; Optical filters; Optical sensors; Optical signal processing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.839980
Filename :
839980
Link To Document :
بازگشت