DocumentCode :
1330584
Title :
High-Efficiency Isolated Boost DC–DC Converter for High-Power Low-Voltage Fuel-Cell Applications
Author :
Nymand, Morten ; Andersen, Michael A E
Author_Institution :
Inst. of Sensors, Signals & Electrotechnics, Univ. of Southern Denmark, Odense, Denmark
Volume :
57
Issue :
2
fYear :
2010
Firstpage :
505
Lastpage :
514
Abstract :
A new design approach achieving very high conversion efficiency in low-voltage high-power isolated boost dc-dc converters is presented. The transformer eddy-current and proximity effects are analyzed, demonstrating that an extensive interleaving of primary and secondary windings is needed to avoid high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing of the primary-switch voltage rating can thus be avoided, significantly reducing switch-conduction losses. Finally, silicon carbide rectifying diodes allow fast diode turn-off, further reducing losses. Detailed test results from a 1.5-kW full-bridge boost dc-dc converter verify the theoretical analysis and demonstrate very high conversion efficiency. The efficiency at minimum input voltage and maximum power is 96.8%. The maximum efficiency of the proposed converter is 98%.
Keywords :
DC-DC power convertors; fuel cells; power MOSFET; windings; boost DC-DC converter; diode turn-off; full-bridge boost dc-dc converter; high-power low-voltage fuel-cell applications; power 1.5 kW; power MOSFET; primary windings; primary-side voltage clamp circuits; proximity effects; secondary windings; silicon carbide rectifying diodes; switch-conduction losses; transformer eddy-current effects; transformer leakage inductance; winding losses; DC–DC converter; fuel-cell system; high efficiency; switched-mode power supply; transformer;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2009.2036024
Filename :
5332306
Link To Document :
بازگشت