• DocumentCode
    133169
  • Title

    Robust Kalman filtering for nonlinear systems with parameter uncertainties

  • Author

    Ishihara, Sayaka

  • Author_Institution
    Hitachi Res. Lab., Ltd., Hitachi, Japan
  • fYear
    2014
  • fDate
    9-12 Sept. 2014
  • Firstpage
    1986
  • Lastpage
    1991
  • Abstract
    This paper addresses state estimation problems for nonlinear systems with parameter uncertainties. A new robust unscented Kalman filter is devised by analyzing the influence which parameter uncertainties give to covariance matrix. Proposed method is one form of the DKF, but proposed method have a merit that designing weight matrix is easier than DKF in a certain situation. The validity of the proposed method is illustrated in Monte Carlo simulation.
  • Keywords
    Kalman filters; Monte Carlo methods; covariance matrices; nonlinear filters; nonlinear systems; state estimation; DKF; Monte Carlo simulation; covariance matrix; desensitised Kalman filter; nonlinear systems; parameter uncertainties; robust unscented Kalman filter; state estimation problems; weight matrix; Covariance matrices; Equations; Estimation; Kalman filters; Mathematical model; Robustness; Uncertain systems; Nonlinear filtering; Robust filtering; State Estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    SICE Annual Conference (SICE), 2014 Proceedings of the
  • Conference_Location
    Sapporo
  • Type

    conf

  • DOI
    10.1109/SICE.2014.6935312
  • Filename
    6935312