• DocumentCode
    1332609
  • Title

    Recursive cube of rings: a new topology for interconnection networks

  • Author

    Sun, Yuzhong ; Cheung, Paul Y S ; Lin, Xiaola

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Hong Kong Univ., China
  • Volume
    11
  • Issue
    3
  • fYear
    2000
  • fDate
    3/1/2000 12:00:00 AM
  • Firstpage
    275
  • Lastpage
    286
  • Abstract
    In this paper, we introduce a family of scalable interconnection network topologies, named Recursive Cube of Rings (RCR), which are recursively constructed by adding ring edges to a cube. RCRs possess many desirable topological properties in building scalable parallel machines, such as fixed degree, small diameter, wide bisection width, symmetry, fault tolerance, etc. We first examine the topological properties of RCRs. We then present and analyze a general deadlock-free routing algorithm for RCRs. Using a complete binary tree embedded into an RCR with expansion-cost approximating to one, an efficient broadcast routing algorithm on RCRs is proposed. The upper bound of the number of message passing steps in one broadcast operation on a general RCR is also derived
  • Keywords
    fault tolerant computing; multiprocessor interconnection networks; parallel machines; Recursive Cube of Rings; fault tolerance; scalable interconnection network topologies; scalable parallel machines; Algorithm design and analysis; Binary trees; Broadcasting; Buildings; Fault tolerance; Multiprocessor interconnection networks; Network topology; Parallel machines; Routing; System recovery;
  • fLanguage
    English
  • Journal_Title
    Parallel and Distributed Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1045-9219
  • Type

    jour

  • DOI
    10.1109/71.841743
  • Filename
    841743