DocumentCode :
1332882
Title :
Deconvolution filter design via l1 optimization technique
Author :
Peng, Sen-Chueh ; Chen, Bor-Sen
Author_Institution :
Dept. of Electr. Eng., Nat. Yun-Lin Polytech. Inst., Taiwan
Volume :
45
Issue :
3
fYear :
1997
fDate :
3/1/1997 12:00:00 AM
Firstpage :
736
Lastpage :
746
Abstract :
A new l1 optimal deconvolution filter design approach for systems with uncertain (or unknown)-but-bounded inputs and external noises is proposed. The purpose of this deconvolution filter is to minimize the peak gain from the input signal and noise to the error by the viewpoint of the time domain. The solution consists of two steps. In the first step, the l1 norm minimization problem is transferred to an equivalent A-norm minimization problem, and the minimum value of the peak gain is calculated. In the second step, based on the minimum peak gain, the l1 optimal deconvolution filter is constructed by solving a set of constrained linear equations. Some techniques of inner-outer factorization, polynominal spectral factorization, linear programming, and some optimization theorems found in a book by Luenberger are applied to treat the l1 optimal deconvolution filter design problem. Although the analysis of the algorithm seems complicated, the calculation of the proposed design algorithm for actual systems is simple. Finally, one numerical example is given to illustrate the proposed design approach. Several simulation results have confirmed that the proposed l1 optimal deconvolution filter has more robustness than the l2 optimal deconvolution filter under uncertain driving signals and noises
Keywords :
deconvolution; filtering theory; linear programming; minimisation; polynomials; time-domain analysis; constrained linear equations; deconvolution filter design; external noises; inner-outer factorization; input signal; l1 optimization technique; linear programming; minimization problem; peak gain; polynominal spectral factorization; time domain; Algorithm design and analysis; Books; Deconvolution; Design optimization; Distortion; Equations; Filtering; Linear programming; Nonlinear filters; Polynomials;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.558492
Filename :
558492
Link To Document :
بازگشت