DocumentCode :
1333418
Title :
Unscented Kalman filter for non-linear estimation of induction machine parameters
Author :
Lalami, A. ; Wamkeue, R. ; Kamwa, Innocent ; Saad, Maarouf ; Beaudoin, J.J.
Author_Institution :
Dept. des Sci. Appl., Univ. du Quebec en Abitibi-Temiscamingue, Rouyn-Noranda, QC, Canada
Volume :
6
Issue :
9
fYear :
2012
fDate :
11/1/2012 12:00:00 AM
Firstpage :
611
Lastpage :
620
Abstract :
In a previous authors´ work, a short circuit and start-up tests have been used with the so-called two steps identification method to compute the induction machine´s (IM) electrical and mechanical parameters. This latter approach was unable to compute IM parameters with a single dynamic test and could not be applied when IM identification data are noise corrupted. In the present study, the unscented Kalman filter (UKF) is used as non-linear optimal predictor for the saturated electromechanical stochastic dynamic model of IM. In order to overcome the uncertainty on the knowledge of noise-model parameters, the maximum likelihood estimation algorithm is combined to the UKF to compute IM parameters. The technique is successfully applied for the parameters estimation of a 2-kW, 4-pole, 10-A, 60-Hz laboratory induction motor using a start-up test noisy corrupted data. Furthermore, a cross-validation of the estimated model using short-circuit test greatly attests to the effectiveness and validity of the estimated IM model in a wide range of applications.
Keywords :
Kalman filters; asynchronous machines; maximum likelihood estimation; parameter estimation; UKF; current 10 A; dynamic test; electrical parameters; frequency 60 Hz; identification method; induction machine parameters; induction motor; maximum likelihood estimation algorithm; mechanical parameters; noise-model parameters; nonlinear estimation; nonlinear optimal predictor; parameters estimation; power 2 kW; saturated electromechanical stochastic dynamic model; short circuit tests; start-up tests; unscented Kalman filter;
fLanguage :
English
Journal_Title :
Electric Power Applications, IET
Publisher :
iet
ISSN :
1751-8660
Type :
jour
DOI :
10.1049/iet-epa.2012.0026
Filename :
6353074
Link To Document :
بازگشت