DocumentCode
1333666
Title
Recursive algorithms for computing the Cramer-Rao bound
Author
Hero, Alfred O. ; Usman, Mohammad ; Sauve, Anne C. ; Fessler, Jeffrey A.
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Volume
45
Issue
3
fYear
1997
fDate
3/1/1997 12:00:00 AM
Firstpage
803
Lastpage
807
Abstract
Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient algorithms. For a large class of inverse problems, we show that nonmonotone Gauss-Seidel and preconditioned conjugate gradient algorithms require significantly fewer flops for convergence than monotone “bound preserving” algorithms
Keywords
conjugate gradient methods; convergence of numerical methods; deconvolution; image restoration; inverse problems; iterative methods; matrix inversion; medical image processing; parameter estimation; positron emission tomography; recursive estimation; Cramer-Rao bound; deconvolution; direct matrix inversion; estimator variance; image restoration; inverse problems; iterative methods; matrix splitting; nonmonotone Gauss-Seidel algorithms; preconditioned conjugate gradient algorithms; pseudo-inverse Fisher information matrix; recursive algorithms; tomographic reconstruction; Chromium; Convergence; Covariance matrix; Equations; Gaussian processes; Inverse problems; Iterative algorithms; Iterative methods; Jacobian matrices; Signal processing algorithms;
fLanguage
English
Journal_Title
Signal Processing, IEEE Transactions on
Publisher
ieee
ISSN
1053-587X
Type
jour
DOI
10.1109/78.558511
Filename
558511
Link To Document