• DocumentCode
    1333666
  • Title

    Recursive algorithms for computing the Cramer-Rao bound

  • Author

    Hero, Alfred O. ; Usman, Mohammad ; Sauve, Anne C. ; Fessler, Jeffrey A.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
  • Volume
    45
  • Issue
    3
  • fYear
    1997
  • fDate
    3/1/1997 12:00:00 AM
  • Firstpage
    803
  • Lastpage
    807
  • Abstract
    Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient algorithms. For a large class of inverse problems, we show that nonmonotone Gauss-Seidel and preconditioned conjugate gradient algorithms require significantly fewer flops for convergence than monotone “bound preserving” algorithms
  • Keywords
    conjugate gradient methods; convergence of numerical methods; deconvolution; image restoration; inverse problems; iterative methods; matrix inversion; medical image processing; parameter estimation; positron emission tomography; recursive estimation; Cramer-Rao bound; deconvolution; direct matrix inversion; estimator variance; image restoration; inverse problems; iterative methods; matrix splitting; nonmonotone Gauss-Seidel algorithms; preconditioned conjugate gradient algorithms; pseudo-inverse Fisher information matrix; recursive algorithms; tomographic reconstruction; Chromium; Convergence; Covariance matrix; Equations; Gaussian processes; Inverse problems; Iterative algorithms; Iterative methods; Jacobian matrices; Signal processing algorithms;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.558511
  • Filename
    558511