DocumentCode :
1334287
Title :
Error-energy bounds for adaptive gradient algorithms
Author :
Sayed, Ali H. ; Rupp, Markus
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume :
44
Issue :
8
fYear :
1996
fDate :
8/1/1996 12:00:00 AM
Firstpage :
1982
Lastpage :
1989
Abstract :
The paper establishes robustness, optimality, and convergence properties of the widely used class of instantaneous-gradient adaptive algorithms. The analysis is carried out in a purely deterministic framework and assumes no a priori statistical information. It employs the Cauchy-Schwarz inequality for vectors in an Euclidean space and derives local and global error-energy bounds that are shown to highlight, as well as explain, relevant aspects of the robust performance of adaptive gradient filters (along the lines of H theory)
Keywords :
H control; H optimisation; adaptive filters; adaptive signal processing; convergence of numerical methods; error analysis; filtering theory; least mean squares methods; robust control; Cauchy-Schwarz inequality; Euclidean space; H theory; LMS; adaptive gradient filters; convergence properties; deterministic framework; global error-energy bound; instantaneous gradient adaptive algorithms; local error-energy bound; optimality; robust performance; vectors; Autocorrelation; Convergence; Cost function; Equations; Estimation error; Least squares approximation; Recursive estimation; Robustness; Stochastic processes; Vectors;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.533719
Filename :
533719
Link To Document :
بازگشت