Title :
Exploring estimator bias-variance tradeoffs using the uniform CR bound
Author :
Hero, Alfred O., III ; Fessler, Jeffrey A. ; Usman, Mohammad
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
fDate :
8/1/1996 12:00:00 AM
Abstract :
We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramer-Rao (CR) bound on estimator variance, a delta-sigma tradeoff curve is specified that defines an “unachievable region” of the delta-sigma plane for a specified statistical model. In order to place an estimator on this plane for comparison with the delta-sigma tradeoff curve, the estimator variance, bias gradient, and bias gradient norm must be evaluated. We present a simple and accurate method for experimentally determining the bias gradient norm based on applying a bootstrap estimator to a sample mean constructed from the gradient of the log-likelihood. We demonstrate the methods developed in this paper for linear Gaussian and nonlinear Poisson inverse problems
Keywords :
Gaussian processes; inverse problems; parameter estimation; signal sampling; statistical analysis; stochastic processes; bias gradient; bias gradient norm; bootstrap estimator; delta-sigma plane; estimator bias function; estimator bias gradient; estimator bias-variance tradeoffs; linear Gaussian inverse problems; log-likelihood gradient; nonlinear Poisson inverse problems; parameter estimation; parameter space; sample mean; statistical model; unachievable region; uniform CR bound; uniform Cramer-Rao bound; Chromium; Computer science; Fluctuations; Helium; Image sampling; Inverse problems; Random variables; Smoothing methods; Spectral analysis; Vectors;
Journal_Title :
Signal Processing, IEEE Transactions on