• DocumentCode
    1338331
  • Title

    Sampling Schemes for Sequential Detection With Dependent Observations

  • Author

    Niu, Ruixin ; Varshney, Pramod K.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
  • Volume
    58
  • Issue
    3
  • fYear
    2010
  • fDate
    3/1/2010 12:00:00 AM
  • Firstpage
    1469
  • Lastpage
    1481
  • Abstract
    Several sampling schemes and their corresponding sequential detection procedures in autoregressive noise are presented in this paper. Two of them use uniform sampling procedures with high and low sampling rates, respectively. The other two employ groups of samples, which are separated by long intergroup delays such that the intergroup correlations are negligible. One of the group-sampling schemes also employs optimal signaling waveforms to further improve its energy-efficiency. In all the schemes, data sampling and transformation are designed in such a way that Wald´s sequential probability ratio test (SPRT) can still be implemented. The performances of different schemes, in terms of average termination time (ATT), are derived analytically. When all the schemes employ the same sampling interval and under a constant signal amplitude constraint, their performances are compared through analytical and numerical methods. In addition, under a constant power constraint, their ATTs and energy-efficiency are compared. It is theoretically proved that the scheme using groups of samples with the optimal signaling waveform is the most energy-efficient.
  • Keywords
    probability; signal detection; signal sampling; wavelet transforms; autoregressive noise; average termination time; data sampling; dependent observations; optimal signaling waveform; optimal signaling waveforms; sampling schemes; sequential detection; sequential probability ratio test; signal-to-noise ratio; Autoregressive noise; colored noise; sampling; sequential detection;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2009.2037058
  • Filename
    5339138