DocumentCode :
133853
Title :
FPGA neural identifier for insulin-glucose dynamics
Author :
Romero-Aragon, Jorge C. ; Sanchez, Edgar N. ; Alanis, Alma Y.
Author_Institution :
Unidad Guadalajara, CINVESTAV, Zapopan, Mexico
fYear :
2014
fDate :
3-7 Aug. 2014
Firstpage :
675
Lastpage :
680
Abstract :
In this paper, the implementation of a discrete-time neural model in an field programmable gate array (FPGA) is proposed to model insulin-glucose dynamics of type 1 diabetes mellitus (T1DM) patients. The neural model is obtained from an on-line neural identifier, which uses a recurrent high-order neural network (RHONN) trained with an extended Kalman filter (EKF), which captures the nonlinear behavior of this dynamics. Experimental data given by continuous glucose monitoring (CGM) device are utilized for identification.
Keywords :
Kalman filters; diseases; field programmable gate arrays; neural nets; nonlinear filters; patient monitoring; recurrent neural nets; CGM device; EKF; FPGA neural identifier; RHONN; T1DM patients; continuous glucose monitoring device; discrete-time neural model; extended Kalman filter; field programmable gate array; insulin-glucose dynamics; neural model; nonlinear behavior; on-line neural identifier; recurrent high-order neural network; type 1 diabetes mellitus patients; Diabetes; Field programmable gate arrays; Insulin; MATLAB; Mathematical model; Registers; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World Automation Congress (WAC), 2014
Conference_Location :
Waikoloa, HI
Type :
conf
DOI :
10.1109/WAC.2014.6936098
Filename :
6936098
Link To Document :
بازگشت