DocumentCode :
1339603
Title :
A Robust Nonlinear Control Approach for Tip Position Tracking of Flexible Spacecraft
Author :
Malekzadeh, Maryam ; Naghash, Abolghasem ; Talebi, H.A.
Author_Institution :
Dept. of Aerosp. Eng., Amirkabir Univ. of Technol., Tehran, Iran
Volume :
47
Issue :
4
fYear :
2011
fDate :
10/1/2011 12:00:00 AM
Firstpage :
2423
Lastpage :
2434
Abstract :
In this paper, the problem of attitude control of a 3D nonlinear flexible spacecraft is investigated. Two nonlinear controllers are presented. The first controller is based on dynamic inversion, while the second approach is composed of dynamic inversion and γ-synthesis schemes. The extension of dynamic inversion approach to flexible spacecraft is impeded by the nonminimum phase characteristics when the panel tip position is taken as the output of the system. To overcome this problem, the controllers are designed by utilizing the modified output redefinition approach. It is assumed that only three torques in three directions on the hub are used. Actuator saturation is also considered in the design of controllers. To evaluate the performance of the proposed controllers, an extensive number of simulations on a nonlinear model of the spacecraft are performed. The performances of the proposed controllers are compared in terms of nominal performance, robustness to uncertainties, vibration suppression of panel, sensitivity to measurement noise, environment disturbance, and nonlinearity in large maneuvers. Simulation results confirm the ability of the proposed controller in tracking the attitude trajectory while damping the panel vibration. It is also verified that the perturbations, environment disturbances, and measurement errors have only slight effects on the tracking and damping performances.
Keywords :
actuators; aircraft control; attitude control; control system synthesis; nonlinear control systems; position control; robust control; torque control; vibration control; γ-synthesis scheme; 3D nonlinear flexible spacecraft; actuator saturation; attitude control; damping performance; dynamic inversion; environment disturbance; measurement error; measurement noise; modified output redefinition approach; nonminimum phase characteristic; panel vibration; robust nonlinear control; tip position tracking; torque; Aerodynamics; Attitude control; Mathematical model; Nonlinear control; Nonlinear dynamical systems; Space vehicles; Vibrations;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2011.6034642
Filename :
6034642
Link To Document :
بازگشت