DocumentCode :
1340254
Title :
Computational Limits to Nonparametric Estimation for Ergodic Processes
Author :
Takahashi, Hayato
Author_Institution :
Inst. of Stat. Math., Tokyo, Japan
Volume :
57
Issue :
10
fYear :
2011
Firstpage :
6995
Lastpage :
6999
Abstract :
A new negative result for nonparametric distribution estimation of binary ergodic processes is shown. The problem of estimation of distribution with any degree of accuracy is studied. Then it is shown that for any countable class of estimators there is a zero-entropy binary ergodic process that is inconsistent with the class of estimators. Our result is different from other negative results for universal forecasting scheme of ergodic processes.
Keywords :
entropy; estimation theory; forecasting theory; computational limit; estimators countable class; nonparametric distribution estimation; universal forecasting scheme; zero-entropy binary ergodic process; Accuracy; Convergence; Entropy; Estimation; Stacking; System-on-a-chip; Trajectory; Computable function; cutting and stacking; ergodic process; nonparametric estimation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2165791
Filename :
6034744
Link To Document :
بازگشت