• DocumentCode
    1340454
  • Title

    Detector design using a density fit to non-Gaussian noise

  • Author

    Martinez, Andrew B. ; Thomas, John B.

  • Author_Institution
    Dept. of Electr. Eng., Princeton Univ., NJ, USA
  • Volume
    34
  • Issue
    3
  • fYear
    1988
  • fDate
    5/1/1988 12:00:00 AM
  • Firstpage
    544
  • Lastpage
    550
  • Abstract
    Suboptimal nonlinear detectors for known small signals in non-Gaussian noise are investigated. It is assumed that either the locally optimal nonlinearity is too complex to use or that the noise density is not known precisely. A memoryless suboptimal nonlinearity (ZNL) can be chosen, and the family of densities for which it is optimal is found. A member of this family is then fitted to the observed noise, and the corresponding detector is used. When a rational function is chosen for the nonlinearity, the Pearson family is the set of solution densities. This is not only a general family which contains many common univariate densities, but for nearly Gaussian noise the method of moments can be used efficiently to fit a member density to the noise. The coefficients of a ZNL are estimated for several (non-Pearson) densities using the first four noise moments
  • Keywords
    interference (signal); signal detection; Pearson family; density fit; memoryless suboptimal nonlinearity; method of moments; nonGaussian noise; signal detection; suboptimal nonlinear detectors; Detectors; Gaussian noise; Helium; Moment methods; Noise level; Nonlinear filters; Piecewise linear approximation; Piecewise linear techniques; Signal design; Statistics;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.6035
  • Filename
    6035