DocumentCode :
1342531
Title :
An Array Recursive Least-Squares Algorithm With Generic Nonfading Regularization Matrix
Author :
Tsakiris, Manolis C. ; Lopes, Cassio G. ; Nascimento, Vítor H.
Author_Institution :
Dept. of Electron. Syst., Univ. of Sao Paulo, Sao Paulo, Brazil
Volume :
17
Issue :
12
fYear :
2010
Firstpage :
1001
Lastpage :
1004
Abstract :
We present a novel array RLS algorithm with forgetting factor that circumvents the problem of fading regularization, inherent to the standard exponentially-weighted RLS, by allowing for time-varying regularization matrices with generic structure. Simulations in finite precision show the algorithm´s superiority as compared to alternative algorithms in the context of adaptive beamforming.
Keywords :
array signal processing; fading channels; least squares approximations; adaptive beamforming; array RLS algorithm; array recursive least squares algorithm; generic nonfading regularization matrix; time-varying regularization matrices; Algorithm design and analysis; Arrays; Least squares approximation; Recursive estimation; Time varying systems; Array forms; RLS; regularization;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2010.2083652
Filename :
5594619
Link To Document :
بازگشت