Title :
OCR in a hierarchical feature space
Author :
Park, Jaehwa ; Govindaraju, Venu ; Srihari, Sargur N.
Author_Institution :
Dept. of Comput. Sci. & Eng., State Univ. of New York, Buffalo, NY, USA
fDate :
4/1/2000 12:00:00 AM
Abstract :
This paper describes hierarchical OCR, a character recognition methodology that achieves high speed and accuracy by using a multiresolution and hierarchical feature space. Features at different resolutions, from coarse to fine-grained, are implemented by means of a recursive classification scheme. Typically, recognizers have to balance the use of features at many resolutions (which yields a high accuracy), with the burden on computational resources in terms of storage space and processing time. We present in this paper, a method that adaptively determines the degree of resolution necessary in order to classify an input pattern. This leads to optimal use of computational resources. The hierarchical OCR dynamically adapts to factors such as the quality of the input pattern, its intrinsic similarities and differences from patterns of other classes it is being compared against, and the processing time available. Furthermore, the finer resolution is accorded to only certain “zones” of the input pattern which are deemed important given the classes that are being discriminated. Experimental results support the methodology presented. When tested on standard NIST data sets, the hierarchical OCR proves to be 300 times faster than a traditional K-nearest-neighbor classification method, and 10 times taster than a neural network method. The comparison uses the same feature set for all methods. Recognition rate of about 96 percent is achieved by the hierarchical OCR. This is at par with the other two traditional methods
Keywords :
computational complexity; image classification; optical character recognition; optimisation; computational resource burden; hierarchical OCR; multiresolution hierarchical feature space; processing time; recursive classification scheme; storage space; Character recognition; Feature extraction; NIST; Neural networks; Optical character recognition software; Pattern recognition; Senior members; Testing; Venus;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on