DocumentCode :
1343915
Title :
Design and Control of a 1-DOF MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines
Author :
Yang, Bo ; Tan, U-Xuan ; McMillan, Alan B. ; Gullapalli, Rao ; Desai, Jaydev P.
Author_Institution :
Robot., Autom., & Med. Syst. (RAMS) Lab., Univ. of Maryland, College Park, MD, USA
Volume :
16
Issue :
6
fYear :
2011
Firstpage :
1040
Lastpage :
1048
Abstract :
This paper presents the design and control of an MRI-compatible 1-DOF needle-driver robot and its precise position control using pneumatic actuation with long transmission lines. MRI provides superior image quality compared to other imaging modalities, such as computed tomography or ultrasound, but imposes severe limitations on the material and actuator choice (to prevent image distortion) due to its strong magnetic field. We are primarily interested in developing a pneumatically actuated breast biopsy robot with a large force bandwidth and precise targeting capability during RF ablation (RFA) of breast tumor, and exploring the possibility of using long pneumatic transmission lines from outside the MRI room to the device in the magnet to prevent any image distortion whatsoever. This paper presents a model of the entire pneumatic system. The pneumatic lines are approximated by a first-order system with time delay, since its dynamics are governed by the telegraph equation with varying coefficients and boundary conditions, which cannot be solved precisely. The slow response of long pneumatic lines and valve subsystems make position control challenging. This is further compounded by the presence of nonuniform friction in the device. Sliding-mode control (SMC) was adopted, where friction was treated as an uncertainty term to drive the system onto the sliding surface. Three different controllers were designed, developed, and evaluated to achieve precise position control of the RFA probe. Experimental results revealed that all SMCs gave satisfactory performance with long transmission lines. We also performed several experiments with a 3-DOF fiber-optic force sensor attached to the needle driver to evaluate the performance of the device in the MRI under continuous imaging.
Keywords :
biomedical MRI; medical robotics; pneumatic control equipment; position control; tumours; variable structure systems; 1-DOF MRI-compatible pneumatically actuated robot; 3-DOF fiber-optic force sensor; MRI-compatible 1-DOF needle-driver robot; RF ablation; boundary conditions; breast biopsy robot; breast tumor; first-order system; image distortion; image quality; long transmission lines; nonuniform friction; pneumatic actuation; pneumatic lines; pneumatic system; position control; sliding-mode control; telegraph equation; time delay; Force sensors; Magnetic resonance imaging; Pneumatic actuators; Position control; Sliding mode control; Transmission lines; Long transmission line; MRI; pneumatic actuation; sliding-mode control (SMC);
fLanguage :
English
Journal_Title :
Mechatronics, IEEE/ASME Transactions on
Publisher :
ieee
ISSN :
1083-4435
Type :
jour
DOI :
10.1109/TMECH.2010.2071393
Filename :
5595006
Link To Document :
بازگشت