• DocumentCode
    1345334
  • Title

    Probabilistic winner-take-all segmentation of images with application to ship detection

  • Author

    Osman, Hossam ; Blostein, Steven D.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Queen´´s Univ., Kingston, Ont., Canada
  • Volume
    30
  • Issue
    3
  • fYear
    2000
  • fDate
    6/1/2000 12:00:00 AM
  • Firstpage
    485
  • Lastpage
    490
  • Abstract
    A recent neural clustering scheme called “probabilistic winner-take-all (PWTA)” is applied to image segmentation. It is demonstrated that PWTA avoids underutilization of clusters by adapting the form of the cluster-conditional probability density function as clustering proceeds. A modification to PWTA is introduced so as to explicitly utilize the spatial continuity of image regions and thus improve the PWTA segmentation performance. The effectiveness of PWTA is then demonstrated through the segmentation of airborne synthetic aperture radar (SAR) images of ocean surfaces so as to detect ship signatures, where an approach is proposed to find a suitable value for the number of clusters required for this application. Results show that PWTA gives high segmentation quality and significantly outperforms four other segmentation techniques, namely, 1) K-means, 2) maximum likelihood (ML), 3) backpropagation network (BPN), and 4) histogram thresholding
  • Keywords
    image segmentation; pattern clustering; probabilistic logic; radar imaging; synthetic aperture radar; PWTA; PWTA segmentation; airborne synthetic aperture radar; image segmentation; neural clustering; probabilistic winner-take-all; segmentation performance; winner-take-all segmentation; Backpropagation; Histograms; Image segmentation; Marine vehicles; Maximum likelihood detection; Oceans; Probability density function; Radar detection; Sea surface; Synthetic aperture radar;
  • fLanguage
    English
  • Journal_Title
    Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1083-4419
  • Type

    jour

  • DOI
    10.1109/3477.846236
  • Filename
    846236