Title :
Space-alternating generalised expectation-maximisation-based h-infinity channel estimator for multiple-input multiple-output-orthogonal frequency division multiplexing systems
Author :
Xu, Peng ; Wang, J.K. ; Qi, Feng ; Song, Xiaoyu
Author_Institution :
Sch. of Inf. Sci. & Eng., Northeastern Univ., Qinhuangdao, China
Abstract :
This study presents a low-complexity and robust H-infinity channel estimator for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The H-infinity estimator, which has never been devoted to MIMO-OFDM systems, could be implemented by applying a multiple-order auto-regression (AR) model. However, it may increase the design complexity of receivers and lead to poor real-time property when this model is used for MIMO-OFDM systems, which makes the authors abandon AR model. In order to reduce the number of matrices manipulations because of the each received OFDM symbols from different transmit antennas, the iterative space-alternating generalised expectation-maximisation (SAGE) algorithm is adopted. Furthermore, to deal with the effect of non-Gaussian noise (NGN) channels, because of various natural or man-made impulsive sources, an equivalent signal model (ESM) is introduced to alleviate the effect of this issue and enhance the robust of SAGE-based H-infinity estimator. Simulation results show that H-infinity estimator has almost the same bit error rate performance as optimal maximum a posteriori estimator. The performance gain afforded by using ESM can be substantial when compared with using the traditional signal model, which dramatically enhance the robustness of SAGE-based H-infinity estimator against NGN channels.
Keywords :
MIMO communication; OFDM modulation; autoregressive processes; channel estimation; expectation-maximisation algorithm; next generation networks; radio receivers; MIMO-OFDM system; NGN channels; OFDM symbol; design complexity; equivalent signal model; iterative space-alternating generalised expectation-maximisation algorithm; low-complexity H-infinity channel estimator; man-made impulsive sources; matrices manipulation; multiple-input multiple-output-orthogonal frequency division multiplexing; multiple-order autoregression model; nonGaussian noise channel; receivers; robust H-infinity channel estimator; transmit antennas;
Journal_Title :
Communications, IET
DOI :
10.1049/iet-com.2010.0487