DocumentCode :
1347859
Title :
Parameter extraction for statistical IC modeling based on recursive inverse approximation
Author :
Qu, Ming ; Styblinski, M.A.
Author_Institution :
Nat. Semicond. Corp., Santa Clara, CA, USA
Volume :
16
Issue :
11
fYear :
1997
fDate :
11/1/1997 12:00:00 AM
Firstpage :
1250
Lastpage :
1259
Abstract :
An accurate and efficient parameter extraction methodology, utilizing a new technique called recursive inverse approximation (RIA), is proposed for statistical modeling of integrated circuits. The main features of RIA are (1) linear approximation is used to obtain initial model parameter estimates, (2) reverse verification performs accuracy checking, and (3) error correction functions are constructed in the extracted parameter space to recursively refine the previously extracted parameter values. As a result, an approximate inverse mapping from the measured performance space to the model parameter space is established for statistical parameter extraction. Examples of parameter extraction for MOS transistors and IC multiplier block demonstrate high efficiency and accuracy of the new method
Keywords :
approximation theory; integrated circuit modelling; inverse problems; statistical analysis; IC multiplier; MOS transistor; error correction function; integrated circuit; linear approximation; parameter extraction; recursive inverse approximation; reverse verification; statistical model; Data mining; Integrated circuit measurements; Integrated circuit modeling; Linear approximation; Parameter estimation; Parameter extraction; Performance evaluation; Recursive estimation; Semiconductor device measurement; Virtual manufacturing;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/43.663816
Filename :
663816
Link To Document :
بازگشت