DocumentCode :
1348668
Title :
Density Forecasting for Long-Term Peak Electricity Demand
Author :
Hyndman, Rob J. ; Fan, Shu
Author_Institution :
Bus. & Economic Forecasting Unit, Monash Univ., Clayton, VIC, Australia
Volume :
25
Issue :
2
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
1142
Lastpage :
1153
Abstract :
Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long-term context, planners must adopt a probabilistic view of potential peak demand levels. Therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. This paper proposes a new methodology to forecast the density of long-term peak electricity demand. Peak electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. A comprehensive forecasting solution is described in this paper. First, semi-parametric additive models are used to estimate the relationships between demand and the driver variables, including temperatures, calendar effects and some demographic and economic variables. Then the demand distributions are forecasted by using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The proposed methodology has been used to forecast the probability distribution of annual and weekly peak electricity demand for South Australia since 2007. The performance of the methodology is evaluated by comparing the forecast results with the actual demand of the summer 2007-2008.
Keywords :
demand forecasting; load forecasting; power system economics; probability; risk management; demand distributions; demand variability; demographic variables; density forecasting; economic variables; financial risk; forecasting uncertainty; future economic scenarios; future generation facilities; long-term peak electricity demand; probability distributions; residual bootstrapping; temperature simulation; transmission augmentation; Density forecast; long-term demand forecasting; simulation; time series;
fLanguage :
English
Journal_Title :
Power Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8950
Type :
jour
DOI :
10.1109/TPWRS.2009.2036017
Filename :
5345698
Link To Document :
بازگشت