DocumentCode :
1348752
Title :
New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data
Author :
Stoica, Petre ; Babu, Prabhu ; Li, Jian
Author_Institution :
Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden
Volume :
59
Issue :
1
fYear :
2011
Firstpage :
35
Lastpage :
47
Abstract :
Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called “dense”) and semiparametric (also called “sparse”). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
Keywords :
covariance analysis; iterative methods; parameter estimation; signal sampling; spectral analysis; SPICE method; array processing; irregularly sampled data; line-spectrum estimation; radar imaging; semiparametric-sparse iterative covariance-based estimation method; separable model; sparse parameter estimation; spectral analysis; statistical inference method; Analytical models; Arrays; Data models; Estimation; Iterative methods; SPICE; Spectral analysis; Irregular sampling; separable models; sparse parameter estimation; spectral analysis;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2010.2086452
Filename :
5599897
Link To Document :
بازگشت