• DocumentCode
    135298
  • Title

    Parameter identifiability analysis of power system transient models based on profile likelihood

  • Author

    Runze Chen ; Hongbin Sun ; Wenchuan Wu ; Yizhong Hu ; Boming Zhang

  • Author_Institution
    Dept. of Electr. Eng., Tsinghua Univ., Beijing, China
  • fYear
    2014
  • fDate
    27-31 July 2014
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    The reliability of power system dynamic simulation and transient stability assessment depends on the accuracy of parameters. Parameter identification is a crucial way of obtaining accurate parameters. However, the assessment of identifiability should be carried out a proiri. This paper demonstrates a new approach to evaluate the identifiability of power system transient model parameters, which considers both the model structure and the input/output data. By exploiting the profile likelihood, confidence intervals of each parameter can be established, based on which, the identifiability indices are calculated. Numerical tests are conducted accordingly to demonstrate the performance of the proposed approach.
  • Keywords
    parameter estimation; power system reliability; power system simulation; power system transient stability; numerical tests; parameter identifiability analysis; parameter identification; power system dynamic simulation reliability; power system transient models; profile likelihood; transient stability assessment; Analytical models; Biological system modeling; Load modeling; Numerical models; Parameter estimation; Transient analysis; identifiability; parameter identification; profile likelihood; transient model;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    PES General Meeting | Conference & Exposition, 2014 IEEE
  • Conference_Location
    National Harbor, MD
  • Type

    conf

  • DOI
    10.1109/PESGM.2014.6939242
  • Filename
    6939242