Title :
Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks
Author :
Cheng, Hsu-Yung ; Weng, Chih-Chia ; Chen, Yi-Ying
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Central Univ., Chungli, Taiwan
fDate :
4/1/2012 12:00:00 AM
Abstract :
We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.
Keywords :
belief networks; feature extraction; image classification; image colour analysis; object detection; surveillance; transforms; vehicles; aerial images; aerial surveillance; color transform; dynamic Bayesian networks; feature extraction; pixelwise classification; stereotype; vehicle color extraction; vehicle detection; Feature extraction; Image color analysis; Image edge detection; Surveillance; Training; Vehicle detection; Vehicles; Aerial surveillance; dynamic Bayesian networks (DBNs); vehicle detection; Aircraft; Algorithms; Artificial Intelligence; Bayes Theorem; Image Enhancement; Image Interpretation, Computer-Assisted; Motor Vehicles; Pattern Recognition, Automated; Photography; Reproducibility of Results; Sensitivity and Specificity;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2011.2172798